image.png

The no of rows for the matrices which describe the spaces should be the same

image.png

image.png

image.png

Rank of A+B matrix

image.png

example of a subspace in R4 where components add upto zero

Let V , W be vectors of this subspace

V+W =[v1+w1,v2+w2,..,v4+w4] the components still add upto zero

cV+dW even scaled the vector components still add upto zero

Find a matrix whose multiplication with v gives the equation v1+v2+v3+v4=0

[1 1 1 1] *V ⇒ v1+v2+v3+v4 = 0

therefore the solution set of the null space of this matrix gives MV=0

Rank of this matrix is 1 and the dimension of null space is 4-1 (n-r) = 3

Reduced row echolon form is the same matrix [1 1 1 1]

image.png

image.png

image.png

image.png